76 
 
Farayola, M. M., Tal, I., Connolly, R., Saber, T., & Bendechache, M. (2023). 
Ethics and Trustworthiness of AI for Predicting the Risk of Recidivism: A 
Systematic  Literature  Review. Information, 14(8),  426. 
hps://doi.org/10.3390/info14080426  
Fetahi, E., Susuri, A., Hamiti, M. et al. (2025). Enhancing social media hate 
speech  detection  in  low-resource  languages  using  transformers  and 
explainable  AI. Soc.  Netw.  Anal.  Min., 15(82). 
hps://doi.org/10.1007/s13278-025-01497-w  
Gupta, C., Johri, I., Srinivasan, K., Hu, Y.-C., Qaisar, S. M., & Huang, K.-Y. 
(2022).  A  Systematic  Review  on  Machine  Learning  and  Deep  Learning 
Models  for  Electronic  Information  Security  in  Mobile 
Networks. Sensors, 22(5), 2017. hps://doi.org/10.3390/s22052017  
Hakami, T. A., Alginahi, Y. M., & Sabri, O. (2025). Exploring the Evolution 
of  Big  Data  Technologies:  A  Systematic  Literature  Review  of  Trends, 
Challenges,  and  Future  Directions. Future  Internet, 17(9),  427. 
hps://doi.org/10.3390/17090427  
Harrell, F.E. (2015). Regression Modeling Strategies With Applications to Linear 
Models, Logistic and Ordinal Regression, and Survival Analysis. Swierland: 
Springer International Publishing Swierland 
Janse, R. J., Hoekstra, T., Jager, K. J., Zoccali, C., Tripepi, G., Dekker, F. W., 
&  van  Diepen,  M.  (2021).  Conducting  correlation  analysis:  important 
limitations  and  pitfalls. Clinical  kidney  journal, 14(11),  2332–2337. 
hps://doi.org/10.1093/ckj/sfab085  
Jiang, Y., Pang, P. C. I., Wong, D., & Kan, H. Y. (2023). Natural Language 
Processing Adoption in Governments and Future Research Directions: A 
Systematic  Review. Applied  Sciences, 13(22),  12346. 
hps://doi.org/10.3390/app132212346  
Kapusta  J.,  Skalka  J.,  Dařena  F.,  Szabó-Nagy  K.,  Przybyła-Kasperek  M., 
Dolgopolovas V., Munk M., and Kelebercová L. (2024). Machine Learning, 
Constantine the Philosopher. Nitra: University in Nitra