76
Farayola, M. M., Tal, I., Connolly, R., Saber, T., & Bendechache, M. (2023).
Ethics and Trustworthiness of AI for Predicting the Risk of Recidivism: A
Systematic Literature Review. Information, 14(8), 426.
hps://doi.org/10.3390/info14080426
Fetahi, E., Susuri, A., Hamiti, M. et al. (2025). Enhancing social media hate
speech detection in low-resource languages using transformers and
explainable AI. Soc. Netw. Anal. Min., 15(82).
hps://doi.org/10.1007/s13278-025-01497-w
Gupta, C., Johri, I., Srinivasan, K., Hu, Y.-C., Qaisar, S. M., & Huang, K.-Y.
(2022). A Systematic Review on Machine Learning and Deep Learning
Models for Electronic Information Security in Mobile
Networks. Sensors, 22(5), 2017. hps://doi.org/10.3390/s22052017
Hakami, T. A., Alginahi, Y. M., & Sabri, O. (2025). Exploring the Evolution
of Big Data Technologies: A Systematic Literature Review of Trends,
Challenges, and Future Directions. Future Internet, 17(9), 427.
hps://doi.org/10.3390/17090427
Harrell, F.E. (2015). Regression Modeling Strategies With Applications to Linear
Models, Logistic and Ordinal Regression, and Survival Analysis. Swierland:
Springer International Publishing Swierland
Janse, R. J., Hoekstra, T., Jager, K. J., Zoccali, C., Tripepi, G., Dekker, F. W.,
& van Diepen, M. (2021). Conducting correlation analysis: important
limitations and pitfalls. Clinical kidney journal, 14(11), 2332–2337.
hps://doi.org/10.1093/ckj/sfab085
Jiang, Y., Pang, P. C. I., Wong, D., & Kan, H. Y. (2023). Natural Language
Processing Adoption in Governments and Future Research Directions: A
Systematic Review. Applied Sciences, 13(22), 12346.
hps://doi.org/10.3390/app132212346
Kapusta J., Skalka J., Dařena F., Szabó-Nagy K., Przybyła-Kasperek M.,
Dolgopolovas V., Munk M., and Kelebercová L. (2024). Machine Learning,
Constantine the Philosopher. Nitra: University in Nitra